Skip to main content
Log in

Soil redox, pH, temperature, and water-table patterns of a freshwater tidal wetland

  • Published:
Wetlands Aims and scope Submit manuscript

Abstract

Knowledge of wetland hydrology, soil redox potential, pH, and temperature dynamics are key components required to understand the capacity of tidal wetlands to function, in particular to attenuate agrichemicals. In a freshwater tidal wetland along the James River in Virginia, USA, redox potential, pH, water-table level, and soil temperature were monitored continuously at two depths (20 and 50 cm) at three sites during a 12-month period from September 1, 1997 to August 31, 1998. Redox potentials were at or below − 150 mV (methanogenic or sulfate reducing conditions) at the 50-cm depth during the entire monitoring period. At the 20-cm depth, redox potentials remained highly reducing 95% of the time. The soil is continuously wet throughout the year, with the water-table level above the 20-cm soil depth for 95% of the time. Water-table level or hydrology was the primary factor controlling fluctuations in the redox state. Soil pH values were generally between 6 and 8, and they dropped 1 pH unit upon an oxidation event, which was reversible. Soil temperature at the 50-cm depth never dropped below 5° C, indicating a year-round biological activity season. This wetland supports a large diversity of plant species. Permanently reduced sub-surfaces, year-round biological activity, and large organic matter accumulations are characteristic features of this freshwater tidal wetland.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Austin, W. E. and J. H. Huddelston. 1999. Viability of permanently installed platinum redox electrodes. Soil Science Society of America Journal 63:1757–1762.

    Article  CAS  Google Scholar 

  • Bartlett, R. J. and B. R. James. 1995. System for categorizing soil redox status by chemical field testing. Geoderma 68:211–218.

    Article  CAS  Google Scholar 

  • Bohn, H. L. 1971. Redox potentials. Soil Science 112:39–45.

    Article  CAS  Google Scholar 

  • Bohn, H., B. McNeal, and G. O’Connor. 1979. Soil Chemistry. John Wiley & Sons, New York, NY, USA.

    Google Scholar 

  • Bowden, W. B., C. J. Vorosmarty, J. T. Morris, B. J. Peterson, J. E. Hobbie, P. A. Steudler, and B. Moore III. 1991. Transport and processing of nitrogen in a tidal freshwater wetland. water Resources Research 27:389–408.

    Article  CAS  Google Scholar 

  • Chabreck, R. H. 1972. Vegetation, water and soil characteristics of the Louisiana coastal region. Louisiana State University and Agricultural Experiment Station Bulletin 664.

  • Chung, K. H., K. S. Ro, and D. Roy. 1995. Atrazine biotransformation in wetland sediment under different nutrient conditions-I: Anaerobic. Journal of Environmental Science and Health A 30: 109–120.

    Article  Google Scholar 

  • DeLaune, R. D. and S. R. Rezeshki. 1991. Role of soil chemistry in vegetative ecology of wetlands. Trends in Soil Science 1:103–113.

    Google Scholar 

  • de Mars, H. and M. J. Wassen. 1999. Redox potentials in relation to water levels in different mire types in the Netherlands and Poland. Plant Ecology 140:41–51.

    Article  Google Scholar 

  • Edmonds, W. J., R. L. Hodges, and C. D. Peacock, Jr. 1990. Tide-water Virginia tidal wetland soils: a reconnaissance characterization. Department of Crop and Soil Environmental Science, Virginia Agricultural Experiment Station, Blacksburg, VA, USA.

    Google Scholar 

  • Faulkner, S. P. and W. H. Patrick, 1992. Redox processes and diagnostic wetland soil indicators in bottomland hardwood forests. Soil Science Society of America Journal 56:856–865.

    Article  Google Scholar 

  • Feijtel, T. C., R. D. DeLaune, and W. H. Patrick, Jr. 1988. Seasonal pore water dynamics in marshes of Barataria Basin, Louisiana. Soil Science Society of America Journal 52:59–67.

    Article  CAS  Google Scholar 

  • Feng, J. and Y. P. Hsieh. 1998. Sulfate reduction in freshwater wetland soils and the effects of sulfate and substrate loading. Journal of Environmental Quality 27:968–972.

    Article  CAS  Google Scholar 

  • Gee, G. W. and J. W. Bauder. 1986. Particle-size analysis. p. 383–411. In A. Klute (ed.) Methods of Soil Analysis: Part 1-Physical and Mineralogical Methods, 2nd ed. Agronomy Monograph 9. American Society of Agronomy and Soil Science Society of America, Madison, WI, USA.

    Google Scholar 

  • Gilliam, J. W. 1994. Riparian wetlands and water quality. Journal of Environmental Quality 23:896–900.

    Article  Google Scholar 

  • Haraguchi, A. 1991. Effects of water-table oscillation on redox property of peat in a floating mat. Journal of Ecology 79:1113–1121.

    Article  Google Scholar 

  • Helling, C. S. 1976. Dinitroaniline herbicides in soil. Journal of Environmental Quality 5:1–15.

    Article  CAS  Google Scholar 

  • Jury, W. A., W. R. Gardner, and W. H. Gardner. 1991. Soil Physics. 5th ed. John Wiley & Sons, New York, NY, USA.

    Google Scholar 

  • Kaiser, J. P. and J. M. Bollag. 1992. Influence of soil inoculum and redox potential on the degradation of several pyridine derivatives. Soil Biology and Biochemistry 24:351–357.

    Article  CAS  Google Scholar 

  • Lindo, D. L. and J. L. Richardson. 2001. Hydric soils and wetlands in riverine systems. p. 283–300. In J. L. Richardson and M. J. Vepraskas (ed.) Wetland Soils: Genesis, Hydrology, Landscapes, and Classification. Lewis Publishers, Boca Raton, FL, USA.

    Google Scholar 

  • Madsen, E. L., A. J. Francis, and J. M. Bollag. 1988. Environmental factors affecting indole metabolism under anaerobic conditions. Applied and Environmental Microbiology 54:74–78.

    CAS  PubMed  Google Scholar 

  • McLean, E. O. 1982. Soil pH and lime requirement. p. 199–224. In A. L. Page, R. H. Miller, and D. R. Keeney (eds.) Methods of Soil Analysis: Part 2-Chemical and microbiological properties. Agronomy Monograph 9. American Society of Agronomy and Soil Science Society of America, Madison, WI, USA.

    Google Scholar 

  • Megonigal, J. P., S. P. Faulkner, and W. H. Patrick. 1996. The microbial activity season in southeastern hydric soils. Soil Science Society of America Journal 60:1263–1266.

    CAS  Google Scholar 

  • Mitsch, W. J. and J. G. Gosselink. 1993. Wetlands. 2nd ed. Van Nostrand Reinhold, New York, NY, USA.

    Google Scholar 

  • Moore, P. A. Jr. and K. R. Reddy. 1994. Role of Eh and pH on phosphorus geochemistry in sediments of Lake Okeechobee, Florida. Journal of Environmental Quality 23:955–964.

    Article  CAS  Google Scholar 

  • Mueller, S. C., L. H. Stolzy, and G. W. Fick. 1985. Constructing and screening platinum microelectrodes for measuring soil redox potential. Soil Science 139:558–560.

    Article  CAS  Google Scholar 

  • Nay, M., M. Snozzi, and A. J. B. Zehnder. 1999. Fate and behavior of organic compounds in an artificial saturated subsoil under controlled redox conditions: The sequential soil column system. Biodegradation 10:75–82.

    Article  CAS  PubMed  Google Scholar 

  • Nelson, D. W. and L. E. Sommers. 1982. Total carbon, organic carbon, and organic matter. p. 539–580. In A. L. Page, R. H. Miller, and D. R. Keeney (ed.) Methods of Soil Analysis: Part 2-chemical and Microbiological Properties. Agronomy Monograph 9. American Society of Agronomy and Soil Science Society of America, Madison, WI, USA.

    Google Scholar 

  • Odum, W. E. 1988. Comparative ecology of tidal freshwater and salt marshes. Annual Review of Ecology and Systematics 19:147–176.

    Article  Google Scholar 

  • Odum, W. E., T. J. Smith, J. K. Hoover, and C. C. McIvor. 1984. The ecology of tidal freshwater marshes of the United States east coast: a community profile. U.S. Fish and Wildlife Service, Washington, DC, USA. FWS/OBS-83/17.

    Google Scholar 

  • Pardue, J. H., R. D. DeLaune, D. D. Adrian, and W. H. Patrick, Jr. 1993. Sorption and degradation of pesticides and organic chemical in soil. Soil Science Society of America, Madison, WI, USA. Special Publication no. 32.

    Google Scholar 

  • Parr, J. F. and S. Smith. 1976. Degradation of toxaphene in selected anaerobic soil sediments. Soil Science 121:52–57.

    Article  Google Scholar 

  • Patrick, Jr., W. H. and R. D. DeLaune. 1977. Chemical and biological redox systems affecting nutrient availability in the coastal wetlands. Geoscience and Man 18:131–137.

    Google Scholar 

  • Patrick, Jr., W. H., R. P. Gambrell, and S. P. Faulkner. 1996. Redox measurements of soils. p. 1255–1276. In D. L. Sparks (ed.) Methods of Soil Analysis: Part 3-Chemical Methods. Soil Science Society of America Book Series: 5. Soil Science Society of America and American Society of Agronomy, Madison, WI, USA.

    Google Scholar 

  • Plumb Jr., R. H. 1981. Procedures for handling and chemical analysis of sediment and water samples. Environmental Laboratory, U.S. Army of Engineer Waterways Experiment Station. Vicksburg, MS, USA.

    Google Scholar 

  • Ponnamperuma, F. N. 1972. The chemistry of submerged soils. Advances in Agronomy 24:29–96.

    Article  CAS  Google Scholar 

  • Rabenhorst, M. C. 2001. Soils of tidal and fringing wetlands. p. 301–315. In J. L. Richardson and M. J. Vepraskas (ed.) Wetland Soils: Genesis, Hydrology, Landscapes, and Classification. Lewis Publishers, Boca Raton, FL, USA.

    Google Scholar 

  • Seybold, C. A., W. Mersie, and C. McNamee. 2001. Anaerobic degradation of atrazine and metolachlor and metabolite formation in wetland soil/water microcosms. Journal of Environmental Quality 30:1271–1277.

    Article  CAS  PubMed  Google Scholar 

  • Simpson, F. A., R. E. Good, M. A. Leck, and D. F. Whigham. 1983. The ecology of freshwater tidal wetlands. Bioscience 33:255–259.

    Article  CAS  Google Scholar 

  • Sinke, A. J. C., O. Dury, and J. Zobrist. 1998. Effects of a fluctuating water table: Column study on redox dynamics and fate of some organic pollutants. Journal of Contaminant Hydrology 33:231–246.

    Article  CAS  Google Scholar 

  • Soil Survey Staff. 1998. Keys to Soil Taxonomy. 8th ed. United States Department of Agriculture, Natural Resources Conservation Service, Washington, DC, USA.

    Google Scholar 

  • Spencer, W. F., M. M. Cliath, W. J. Farmer, and R. A. Shepherd. 1974. Volatility of DDT residues in sol as affected by flooding and organic matter applications. Journal of Environmental Quality 3:126–128.

    Article  CAS  Google Scholar 

  • Trettin, C. C., M. Davidian, M. F. Jurgensen, and R. Lea. 1996. Organic matter decomposition following harvesting and site preparation of a forested wetland. Soil Science Society of America Journal 60:1994–2003.

    Article  CAS  Google Scholar 

  • Vepraskas, M. J. and S. P. Faulkner. 2001. Redox chemistry of hydric soils. p. 85–106. In J. L. Richardson and M. J. Vepraskas (eds.) Wetland Soils: Genesis, Hydrology, Landscapes, and Classification. Lewis Publishers, Boca Raton, FL, USA.

    Google Scholar 

  • Whigham, D. F., R. L. Simpson, and M. A. Leck. 1979. The distribution of seeds, and seedlings of arrow arum (Peltandra virginica (L.) Kunth) in a freshwater tidal wetland. Bulletin of the Torrey Botany Club. 106:193–199.

    Article  Google Scholar 

  • Willis, G. H., R. C. Wander, and C. M. Southwick. 1974. Degradation of trifluralin in soil suspensions as related to redox potential. Journal of Environmental Quality 3:262–265.

    CAS  Google Scholar 

  • Zitomer, D. H. and R. E. Speece. 1993. Sequential environments for enhanced biotransformation of aqueous contaminants. Environmental Science and Technology 27:226–244.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seybold, C.A., Mersie, W., Huang, J. et al. Soil redox, pH, temperature, and water-table patterns of a freshwater tidal wetland. Wetlands 22, 149–158 (2002). https://doi.org/10.1672/0277-5212(2002)022[0149:SRPTAW]2.0.CO;2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1672/0277-5212(2002)022[0149:SRPTAW]2.0.CO;2

Key words

Navigation